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Abstract-A general, implicit, numerical, marching procedure is presented for the solution of parabolic 
partial differential equations, with special reference to those of the boundary layer. The main novelty 
lies in the choice of a grid which adjusts its width so as to conform to the thickness of the layer in which 
significant property gradients are present. The non-dimensional stream function is employed as the in- 
dependent variable across the layer. 

The capabilities of the method are demonstrated by application to: the heated flat plate in a high-Mach- 
number laminar stream; the axi-symmetrical turbulent jet in moving and stagnant surroundings; and the 

radial turbulent wall jet. 

NOMENCLATURE 

(The number in the parentheses denotes the 
equation of first mention.) 

a group of symbols in the convection 
term(3.1.1); 
a coefficient in the difference equation 
(3.2.3) ; 
a group of symbols in the convection 
term(3.1.1); 
a coefficient in the difference equation 
(3.2.3); 
a group of symbols in the diffusion 
term(3.1.1); 
mean skin-friction coefficient ; 
a quantity in the difference equation 
(3.2.3); 
diameter of the jet nozzle (4.2.1) ; 
a coefficient in the difference equation 
for VI (3.2.4); 
dissipation of the turbulent kinetic 
energy (2.1.9) ; 

t Present address: Mechanical Engineering Department. 
Indian Institute of Technology, Kanpur, India. 

E, a coefhcient in the transformed dif- 
ference equation (3.3.7); 

f? a fraction between zero and unity; 

F, a quantity in the transformed dif- 
ference equation (3.3.7); 

91, Q2,93, Q4, coefficients in the difference 

Gt, 
G2, 

G& 

h 
.h: 

H, 

mj, 

form of the convection term (3.2.2); 
E pv, (2.1.2); 
= pv, (2.1.2); 
= pv, (2.1.4); 
specific enthalpy (2.2.6); 
stagnation enthalpy (2.1.7) ; 
a coefficient in the transformed dif- 
ference equation (3.3.7); 
diffusional flux (3.4.1) ; 
mean kinetic energy of the fluctuating 
motion per unit mass (2.1.7); 
the length scales in direction 1 and 
2 (2.1.1); 
mixing length (2.2.3) ; 
length scale associated with k (2.2.4) ; 
a coefficient in the transformed dif- 
ference equation’(3.3.11); 
mass fraction of a chemical species j 
(2.1.8); 
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M, 

N, 

P> 
p, 

Q, 

r, 

R, 

Re, 
Rj, 

s, 

% 
St, 
T, 
4 

u+, 

U 0 
U max, 

VI, 

v,, 

K 

v, 

x, 

Y, 
Y+, 

Yt-7 
YC, 
Yf, 

S. V. PATANKAR and D. B. SPALDING 

a quantity in the transformed dif- 
ference equation (3.3.11) ; 
number of strips across the layer ; 
pressure (2.1.4) ; 
a coefficient in the transformed dif- 
ference equation (3.3.2); 
a quantity in the transformed dif- 
ference equation (3.3.2); 
radius, distance from the axis of 
symmetry (2.1.2) ; 
the radius at which the velocity is 
one-half of the centre-line velocity ; 
a coefftcient in the transformed dif- 
ference equation (3.3.5) ; 
Reynolds number, (pcuGx/h) ; 
rate of generation of the chemical 
speciesj (2.1.8); 
distance along the lI N C& plane 
(2.1.1); 
Stanton-number function for 4 (2.3.1) ; 
the Stanton number; 
absolute temperature (4.1.1) ; 
velocity in longitudinal direction 
(4.2.1) ; 
dimensionless velocity [u/,/(z$p)] 
(4.3.2); 
velocity at the wall-jet slot; 
maximum velocity in the wall-jet 
profile ; 
velocity in direction l(2.1.3) ; 
velocity in direction 2 (2.1.3) ; 
velocity in radial direction(2.1.6); 
velocity in direction 8 (2.1.4) ; 
longitudinal distance (4.2.1) ; 
distance across the layer; 
dimensionless distance (y,/(rsp)/p) 
(4.3.2); 
half-value thickness of the wall jet ; 
thickness of the wall-jet slot; 
characteristic thickness of the layer 
used to calculate the mixing length 
(4.3.1). 

Greek symbols 

By the angle made by direction 1 with 
the symmetry axis (2.1.4); 

the ratio of specific heats; 
a constant in the mixing-length 
formula (4.3.1) ; 
a constant in the the mixing-length 
formula (4.3.1) ; 
laminar viscosity (2.3.1) ; 
effective viscosity in direction 1 (2.1.4); 
effective viscosity in direction 0 ; 
coordinate in direction 1 (2.1.1); 
coordinate in direction 2 (2.1.1) ; 
fluid density (2.1.3) ; 
laminar Prandtl or Schmidt number 
(2.3.1); 
effective Prandtl number (2.1.7) ; 
effective Schmidt number for species j 
(2.1.8); 
effective Prandtl number for the dif- 
fusion of k (2.1.7); 

= pl,efr/~,efr (2.1.6); 
shear stress at the wall ; 
a typical dependent variable (2.1.10) ; 
a predetermined value of 4 used in 
the grid-control formula (3.6.3); 
a term representing generation of 4 
in the typical equation (2.1.10); 
a stream function (2.1.3) ; 
dimensionless steam function, co- 
ordinate in direction 2 (2.1.11). 

Subscripts 

D, the downstream point on a portion 
of the grid; 

D +, D -, points near to and at the same 
value of l1 as D; 

E, the external boundary of the layer; 

G, a free-stream boundary ; 

G-, a point within the layer, near to and 
at the same value of t1 as G; 

1, the internal boundary of the layer ; 

S, a wall boundary ; 

S+, a point within the layer, near to and 
at the same value of <I as S ; 

u, the upstream point on a portion of 
the grid; 

U +, U -, points near to and at the same 
value of t1 as U ; 
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the initial line; jet-nozzle condition; 
the coordinate direction 1; 
the coordinate direction 2; 
the direction perpendicular to the 
radius and in a plane normal to the 
symmetry axis ; 
pertaining to the dependent variable 

6. 

1. INTRODUCTION 

1.1. The problem considered 
HEAT-, mass- a’nd momentum-transfer in 
steadily flowing media are governed by elliptic 
differential equations. Because these are difficult 
to solve, the elliptic equations are often, and 
legitimately, truncated to a parabolic form; 
these truncated equations are the boundary- 
layer equations. 

The present paper provides a new method of 
solving these equations. That a new method may 
be desirable is shown by the fact that existing 
methods are still not widely used; they are either 
too expensive to operate, too difficult to adapt 
to particular problems, or too prone to failures 
and inaccuracies. For this reason many authors, 
including the present ones, have put forward 
approximate procedures of calculation [l], in 
which only a few, integral, forms of the partial 
differential equations are solved; but these too 
have their shortcomings. 

The solution procedures which are simplest 
in concept are those of the numerical, tinite- 
difference type. Many variants have been sug- 
gested and employed successfully; but they are 
open to the above-mentioned objections. The 
new method is also of the finite-difference 
variety ; but it embodies special devices for 
reducing the computation time, without loss 
of accuracy, and for bringing many types of 
problems within the scope of a single computer 
programme. 

1.2. Some remarks on earlier finite-d@rence 
methods 

CZassification. Finite-difference procedures for 
parabolic equations can be distinguished accord- 

ing to the co-ordinatesystems which they employ, 
and according to whether they are “explicit” 
or “implicit” in character. 

Choice of finite-difference formula. For un- 
steady-heat-conduction problems, the explicit 
methods are typified by the Binder-Schmidt 
procedure [2], whereas the implicit methods are 
typified by that of Crank and Nicholson [3]. 
The advantages and disadvantages are well 
known. Explicit methods involve only simple 
arithmetic; but the time interval must not 
exceed a fixed proportion of the square of the 
space interval divided by the thermal diffusivity. 
Implicit methods involve much more arithmetic 
per time interval because simultaneous equa- 
tions appear, requiring solution by matrix-inver- 
sion or successive-substitution techniques; on 
the other hand they are free from any limitation 
on the size of the time interval. 

Whether explicit or implicit methods are 
preferable for heat-conduction problems re- 
mains a matter of opinion. For the problems 
which arise in boundary-layer theory, on the 
other hand the superiority of the implicit 
method is becoming widely recognised. This 
superiority results from the fact that the explicit 
method here has an upper limit on the distance 
interval in the stream direction; and this 
limit is directly proportional to the fluid velocity. 
Since this velocity may become very small near 
a wall, very small distance steps must be taken ; 
the implicit method which is free from this 
restriction, therefore requires much less com- 
puting time than the explicit one. 

Although the implicit method necessitates 
matrix inversion, the matrix is a simple one; so 
inversion may be achieved by way of recurrence 
relations. The procedure of Pashkonov [4] is 
typical ; it employs the Crank-Nicholson form 
of the finite-difference formulae, and has been 
developed for predicting the flow in laminar 
boundary layers. 

Choice of coordinate system. Figure 1 illus- 
trates a typical choice of coordinate grid, and 
enables its disadvantage to be clearly observed. 
The x - y grid is rectangular, and coincides 
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Eoundory of disturbed-flow region 

x 
FIG. 1. The growth of a wall jet into a surrounding stream. 
The sketch shows how the region of disturbed flow widens 

in the downstream direction. 

at one edge with the wall which bounds the 
region of interest. The other boundary of this 
region, shown dotted on the diagram extends 
obliquely across the grid. Now, to achieve 
accuracy, a certain minimum number of grid 
points should be contained at the upstream end 
within the thickness of the layer. Obviously 
therefore, sufficient accuracy in the upstream 
region is purchased at the expense of an ex- 
cessively fine grid for the downstream region. 
So a rectangular grid is likely to be inefficient; 
computations made with its aid are unnecessarily 
expensive. 

Although several means have been proposed 
for solving this difficulty, none is both neat 
and generally applicable. There is therefore a 
need for a general coordinate system which 
allows the requirements of accuracy to be 
reconciled with those of elegance and of com- 
putational efficiency. 

1.3. Outline of the present contribution 
The calculation procedure that is described 

below is of the “implicit” variety. The scheme 
differs slightly from that of Crank and Nicholson ; 
but, like that method it allows the grid spacing 
in the main-stream direction to be freely chosen. 

A greater innovation is the choice of cross- 
stream variable; for this we adopt the non- 
dimensional stream function, o, defined so that 
w always equals zero at one edge of the boundary 

layer and unity at the other. The procedure 
combines the advantages of stream-line co- 
ordinates with those of restricting the boundary 
layer to a finite domain. 

Real boundary layers seldom have observable 
“edges”, so those which are used to normalize 
the stream function are artificial ; but they may 
be freely chosen; and we have devised a method 
of choosing them, during the course of the 
integration procedure, which ensures computa- 
tional efficiency. 

Although the method is a general one for 
parabolic equations, it is here illustrated by 
reference to equations having particular physical 
significance, i.e. to those expressing the laws of 
conservation of momentum, material, and energy 

(of various kinds). These equations are 
assembled, and expressed in the appropriate 
coordinate system in Section 2; there we also 
introduce certain auxiliary relations which are 
appropriate to turbulent flow; and the main 
features of the grid-control technique are des- 
cribed in sub-section 2.4. The procedure of 
numerical solution is described in Section 3 ; 
its use is illustrated in Section 4, by calculations 
of three phenomena: a laminar boundary 
layer, a free turbulent flow, and a turbulent 
wall jet. 

2. ‘I-HE EQUATIONS OF THE BOUNDARY LAYER 

2.1. The partial diflerential equations for axi- 
symmetrical flow 

The coordinate system. Figure 2 illustrates the 
coordinate system which will be adopted for 
the axi-symmetrical flow to which attention 
will be contined.t The coordinate directions 1 
and 2 are orthogonal, or nearly so; the values 
of the coordinates are <I and t2, so defined that 
the element of distance ds in a plane through 
the axis of symmetry is given by: 

(2.1.1) 

The length scales II and 1, remain to be 
defined. 

t Plane flows are, of course, members of the axi-symmetri- 
cal family. 



The direction of the constant-r, lines is 
chosen so that, for the most part, it is nearly 
parallel to the local direction of the component 
of the velocity vector in the plane of the diagram. 
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Momentum conservation in direction 2 : 

o_-1ap WJ~+We -- 
1, x2 

-cos /?. (2.1.5) 
4 at, r 

Momentum conservation in direction 8 : 

G~av, G,ab i a 
--+I,ar,= 

-- 
4 at, w, at2 

’ 
(2.1.6) 

Equation for stagnation enthalpy, &: 

G1 ait G2 ai; 
--+r,ar,= 

-- 
lI at, 

FIG. 2. Co-ordinate system for axi-symmetrical flow. 

The constant-& lines make the angle B with 
the symmetry axis; the angle is of course, 
in general, a function of <r and &. The constant- 
{i lines are, correspondingly, everywhere almost 
perpendicular to stream lines. It will be supposed, 
as part of the boundary-layer approximation, 
that the heat-conduction, diffusion and viscous- 
action vectors have significant components only 
in direction 2. 

The equations. We start from the following 
forms of the differential equations expressing 
the main conservation laws of steady flow. The 
symbols employed are defined in the Nomencla- 
ture. 
Mass conservation : 

$ W,) + -&G,) = 0, (2.1.2) 
1 2 

or, alternatively : 

1 w 
pVl = Gl = --, 

rl, x2 

p~2 = G2 = $. (2.1.3) 
1 1 

Momentum conservation in direction 1: 

+ v G afi I wh . 
- sm j3. 2 la?, r 

(2.1.4) All of these equations, except (2.1.2X (2.1.3) 
and (2.1.Q can be regarded as possessing the 

1 a.v; i 
--_--- 

) 0 Oh, eff x2 2 ce, eff 

(2.1.7) 

Conservation of chemical species j: 

J ; G2amj 
G1 am. 

4 atI 1, x2 

(2.1.8) 

Conservation of kinetic energy of turbulence, k : 

G, ak G2 ak 1 a 

r,ay,+I,ay,= 
-- 
r1112 at, 
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common form : 

GI a4 G, a4 i a 
r,zy+r,ay,= 

+ CD. (2.1.10) 

Here 4 stands for any of the dependent variables : 

VI, V,, i;, mj. k; and @ stands for terms appearing 
on the right-hand side which do not contain 
a~ja~2. Specifically, the meanings of @ can be 
expressed by the following table. 

Table 1. Significances of @ 

When 4 stands for: @ stands for: 

Vl -- + V,G,- +EsinB -1 ap ab 
4 at, at, T 

-61.3&+ (I-&J& 
“(3+kkk) 

a v,z 
x- - 0 ah 2 

mj Rj 

The similarity of their equations allows a 
common treatment for the variables VI, V, &, 
mj and k. The equations expressing conserva- 
tion of mass and of direction-2 momentum 
will be handled differently. 

The transformation to w as cross-stream 
variable. As yet 1, and lz have not been defined. 
We now make a choice of 1, which gives t2 
the significance of the non-dimensional stream 
function, for which we adopt the special symbol 
o; thus 

Ic/ - *I 
52 = 0 = 1c/e _ $I’ (2.1.11) 

Here $r and tiE are the values of 1+9 prevailing 
at the internal (I) and external? (E) boundaries 
of the region which is to be considered; they 
are functions of t1 which may be selected 
arbitrarily, but which we shall try to choose 
so that all the important variations in the 
dependent variables take place at $ values 
between Ic/I and tir. 

Equation (2.1.11) implies : 

ali/=(, _,$!$++_ 
x1 

(2.1.12) 
1 1 

and : 

a@ a* = *E - *I. zg=aw (2.1.13) 

These relations may be substituted into the 
two parts of equation (2.1.3) which expresses 
the mass-conservation principle. The first part 
gives the required relation for 12, while the second 
gives an expression for G1. Thus: 

1 

2 
= lClE - *I 

rG, ’ 
(2.1.14) 

and : 

-1 
G2=rll (2.1.15) 

Substitution of these two results into the 
general differential equation (2.1.10) yields the 

t The labels “internal” and “external” are most apt for 
axi-symmetrical coordinate systems for which c2 increases 
with distance in the radial direction. However, being only 
labels, they can be used generally also. 
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following new form of this equation: 

-- 

(2.1.16) 

It is this equation which forms the starting 
point for the finite-difference procedure. 
The direction-2 momentum equation. Equation 

(2.1.5) can be integrated along a line of constant 
<I to give: 

P-PI= 
‘V,G, 1, w --- 

1, x1 

+ 
KG0 
- I2 cos /? 

> 
d& (2.1.17) 

r 

Substitution from equation (2.1.14), with o 
written in place of r2, yields: 

shown in Fig. 3. Then the direction 1 can be 
taken as parallel to this surface and the direction 
2 (w-direction) as normal to it. Now suppose 
that, along the surface, where cu equals zero, 
1, equals unity; then [I stands for the distance 
along the surface. 

'0, Z awfacr 

Axis of symmQtry 
.---.- 

FIG. 3. Illustration of a typical coordinate system. 

If constant-t, lines are normals to the surface, 
and if the coordinate system can be treated as 
orthogonal, fl is a function of r1 alone; moreover 
the function is prescribed by the shape of the 
surface, which we may suppose to be known. 
A consequence is that the length-scale factor 
II is given by : 

<I =lixed:l, = 1 - , (2.2.1) 

(2.1.18) 

This equation must also be used, in general, 
during the finite-difference solution procedure. 
When, however, @/al, is negligible, as is 
often the case, and when the rotational velocity 
V, is negligible, equation (2.1.18) reduces simply 
to: p = pr = pE; the pressure can be taken as 
uniform across the boundary layer. 

2.2. Auxiliary relations 
Geometrical relations. Appearing in equations 

(2.1.16) and (2.1.18) are the geometrical quan- 
tities: r, 1, and fl. It is necessary to calculate 
these as functions of the independent variables 
r1 and CD. An example will sufCce to show how 
these calculations can be made. 

Suppose that the boundary-layer region is 
bounded by a solid surface of rotation, as 

where I,, of course, varies with CO in accordance 
with equation (2.1.14) and the velocity distribu- 
tion. 

The radius r is also calculable from simple 
geometrical considerations. The relevant formula 
is : 

<I = fixed: r = rI + (cos j?) 7 I2 do. (2.2.2) 
0 

The quantity o 1, do it should be understood, 
d .’ 

equals the distance from the wall measured 
along a line of constant tl. 

In the case illustrated in Fig. 2, the decision 
to locate the Z-surface along the wall requires no 
justification; but it should be recognized that 
it is a free decision, not a forced one. Where to 
place the E-surface is not at first obvious; we 
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can repeat only that we want the region between 
the two surfaces to contain all the points at 
which viscous, diffusion and heat-conduction 
effects are significant. How this can be ensured 
will be described in Section 2.4 below. 

Exchange coefficients. Equations are needed 
which will connect pl,cff, and the exchange- 
coefficient ratios ue,efh oh, eff, a&.&f and Oj,eff, 

with the dependent variables of the calculation. 
If the flow is laminar, pl,eff is the laminar 

viscosity; standard data sources allow this to 
be connected quantitatively with the enthalpy 
and composition of the fluid. Then also ce,ef( 
equals unity, because the laminar viscosity is 
isotropic ; and ok, cff becomes unimportant be- 
cause k is zero. The quantities flh, eff and oj,eff 
are respectively the Prandtl number and the 
Schmidt number, on which standard data 
sources once again give information.? 

When the flow is turbulent, different rela- 
tionships are appropriate. Usually each oeff 
is taken as uniform in the turbulent region, and 
approximately equal to unity; the main interest 
centres on the calculation of pl, eff 

One formula in common use is that of Prandtl 
[5]. This may be written as: 

GP w 
PLcff = I, z 

I I 

(2.2.3) 

where I,,, is the so-called mixing length. The 
latter quantity is usually taken as dependent 

on the distance from the wall ; 7 l2 dw ; examples 
0 

are given below (Section 4). 
Another formula, proposed by Kolmogorov 

[6] and Prandtl [7] connects the viscosity with 
the kinetic energy of turbulence, and another 
length scale, lk This has been used by Monin 
[8] and Glushko [9], among others. The 

t Strictly speaking, in laminar flow, occff reduces to 
the Prandtl number only under certain conditions (e.g. 
equal specific heats for all components, and no chemical 
reaction; or, uniform composition). There is, however, no 
point in discussing the exceptions here. 

formula may be expressed as : 

Pl,eft = hcPk+. (2.2.4) 

The length scale lk is also taken as some function 
of distance from the wall. 

Particularly when V, is of the same order of 
magnitude as VI, more elaborate formulae 
for pl,cff are needed to express experimental 
findings. All known proposals could be easily 
incorporated into the solution procedure that 
is to be described ; there is therefore no necessity 
to introduce further examples. 

The dissipation-rate. Since the employment of 
equation (2.2.4) necessitates solution of the 
differential equation for the kinetic energy of 
turbulence, equation (2.1.9), it is appropriate 
to mention that the dissipation-rate Dk must 
enter an auxiliary relation. An example, in 
accordance with dimensional analysis, is ; 

D, = constant. /Ikill,. (2.2.5) 

Here lk is of course the same as the quantity 
appearing in equation (2.2.4). 

Equations (2.2.4) and (2.2.5) are recommended, 
it should be added, only where the flow is fully 
turbulent. This condition can be expressed in 
terms of a “local Reynolds number of turbu- 
lence” : l,pk+/p should be very much greater 
than unity. What functions are appropriate 
when the condition is not fulfilled is not at 
present clear. 

Thermodynamic relationships. The dependent 
variables are linked by many relations which 
express either, definitions, or thermodynamic 
laws, or material-property relationships. Among 
these is : 

jlsh+T+q+k, (2.2.6) 

where h is the specific enthalpy; the kinetic 
energy associated with direction-2 motion is 
neglected. Equation (2.2.6) allows the enthalpy 
to be calculated from the values of k VI, V, and 
k appearing in the solutions of the differential 
equations. If the equation for k is not being 
solved for use in a viscosity relation like (2.2.4), 



it is usual to drop this equation and neglect the 
contributions of k to ‘h. 

Other important properties linked to enthalpy 
and concentration by thermodynamic relations 
are the temperature T, and the density p. The 
equations are too well known to require 
presentation. 

2.3. Initial and boundary conditions 
The domain of integration. The solutions of 

the equations are to be confined to the region: 

51 2 CL07 0 < cc < 1. Figure 4 illustrates this. 
There is no need to specify the right-hand edge 
of the domain. 

boundary layer is turbulent and a solid wall is 
present, the region near the wall exhibits very 
steep gradients of velocity, and often of other 
variables too. Since the velocity is also low 
there, the &j/@, term is locally negligible in 
the differential equation ;t consequently the 
variation of 4 can be calculated by reference to 
the remaining terms, which involve differential 
coefficients with respect to 0 alone. Thus a 
“Couette-flow analysis” gives a good approxima- 
tion to the exact solution of the equation. 

E boundary 

t 
w 

Direction of integration 

- 

Starting 

line tlo E I- 
I boundary 

FIG. 4. The domain of integration. 

In order to integrate the parabolic equations, 
it is necessary to know values of all the variables 
along the “starting line” where ci equals tl,O; 
these values comprise the initial conditions. 
We shall suppose that they are always available. 

It is possible, but somewhat wasteful, to 
crowd together the constant-o grid lines in the 
region near a wall so as to perform this Couette- 
flow analysis at each step of the finite-difference 
solution procedure. But it is also possible, and 
more economical to carry out Couette-flow 
analyses, once for all, before the particular 
finite-difference calculation is started; the results 
of these analyses can then be incorporated 
into algebraic relationships which serve as 
boundary conditions. The economy arises from 
the resulting freedom to have the constant-o 
lines more evenly spaced ; it suflices, for example, 
to have one which lies somewhat beyond the 
outer edge of the “laminar sub-layer”, and to 
connect values of variables and fluxes there, to 
values and fluxes at the wall by way of algebraic 
formulae. A simple example of such a formula 
is presented in Section 4.3 below. More elaborate 
formulae will be found in [lo]. They have the 
general form : 

Equally necessary is information about condi- 
tions at the I and E boundaries. This information 
may be in the form of prescribed distributions 
of the values of the variables along these lines ; 
alternatively, values of gradients, or other 
functions, of the variables may be prescribed. 
Some special kinds of boundary condition will 
be mentioned in the present section. 

MS+ - &JG,,s+ 

( 

CDS+ 
G I,S+ 

= S&S 
/ 4do 

PS i 
,o*,s,... . (2.3.1) 

The pressure should be prescribed along a 
single boundary; for only one integration 
constant is required for equation (2.1.18). Two 
types of prescription will be mentioned below. 

t This fact is best understood by reference to equation 
(2.14 with 1, and Z, put equal to unity; it is disguised in 
equation (2.1.16) by the fact that the definition of w contains 

Wall-flux laws for turbulent POW. wht~~ the 
G,. The fact is well known to laminar- boundary-layer . 
speaallsts, and easily proved. 

A FINITE-DIFFERENCE PROCEDURE 1397 



1398 S. V. PATANKAR and D. B. SPALDING 

Here the subscript S denotes the solid-surface 
boundary, either E or I, and S+ denotes the 
nearest grid point to S; p is the laminar viscosity 
of the fluid; and a6 is the laminar Prandtl or 
Schmidt number appropriate to property 4. 
The numerator of the left-hand side has the 
significance of the flux of 4 across the boundary; 
the function S,,, is a Stanton number, having 
as its main argument the Reynolds number 

and the laminar Prandtl or Schmidt number. 
Other arguments may account for the presence 
of mass transfer, roughness, pressure gradient 
and property variations ; but they involve 
quantities appropriate to points S and S+ 
alone. 

When the flux through the wall is given, 
equation (2.3.1) is used for the calculation of 

4 s; when, on the other hand, C#J~ is given, the 
flux through the wall is calculated. These 
remarks apply whether 4 stands for temperature, 
enthalpy, concentration, velocity, or any other 
entity for which equation (2.1.10) is valid; of 
course, different words are used to describe 
the various cases ; for example, the “Stanton 
number of momentum transfer” is better known 
as “one half of the drag coefficient”. 

Other conditions at the boundaries. When the 
Z or E boundary does not coincide with a wall, 
it is usual for the values of the dependent 
variables to be prescribed there; for example, 
if the variable is k, the kinetic energy of the 
fluctuating motion, its value on the boundary 
will ordinarily be that which prevails in the 
stream to which the domain of integration is 
adjacent. 

If the boundary coincides with the symmetry 
axis, the gradient of C$ with respect to normal 
distance must be zero. This fact can serve as 
a boundary condition in appropriate circum- 
stances, for example when the centre-line of 
an axi-symmetrical jet is in question. 

The prescription ofthe pressure. It has already 
been mentioned that an equation exists, namely 

(2.1.18), from which the pressure at any point 
along the constant-t, line can be calculated 
whenever one pressure is prescribed; this could 
be either pr or pB Often this prescription is 
given through the velocity at a boundary, 
coupled with the statement that pressure, 
velocity and density are linked there by the 
Euler equation, i.e. by equation (2.1.4), with the 
shear-stress term neglected. This situation 
usually arises in external-flow situations, for 
example boundary layers on aerofoils, and 
free jets. 

When the flow is an internal one, like that 
in a diffuser for example, neither pressure 
nor velocity can be calculated directly from 
input data Instead the continuity equation 
must be solved for the whole flow; this gives an 
additional condition to be satisfied by the 
velocity and density profiles at the next step 
of the integration; it must be solved simul- 
taneously with equations which represent the 
finite-difference form of the differential equation. 
Further discussion will be deferred until these 
equations have been introduced in Section 
3.3 below. 

2.4. The choice of +r and tiE 
The purpose. $l and I++~, it will be remembered, 

are functions of <I which we are still free to 
specify as we wish. The requirements are: that 
the constant-l, lines will be approximately 
normal to stream lines, at any rate in the 
regions of highest velocity; and that the region 
0 < o 6 1 contains all points having significant 
C$ gradients. 

Because, in boundary layers, gradients are 
finite only in slender regions, for which the 
long dimension is roughly parallel to the 
flow direction, fullilment of the second re- 
quirement satisfies the first one also. We shall 
now describe some suitable procedures for 
controlling y?r and +p 

The symmetry axis as a boundary. If the 
region in which gradients are significant en- 
closes the symmetry axis, as in the case of a 
wake behind a cylinder in longitudinal flow, 
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the choice for Il/, is obvious ; it should be 
placed equal to a constant, for example zero. 

A solid wall as a boundary. When the region 
containing significant gradients extends right 
up to a solid wall, as in the case of the flow in 
a diffuser, the objective can be achieved by 
making one of the boundaries coincide with 
the wall. Let us use the subscript S once more 
to denote this boundary. If the wall is imperme- 
able, es must be a constant, which can be 
arbitrarily fixed; if it is permeable, however, tis 
must vary in accordance with equation (2.1.15), 
which reduces (for o equal to zero or unity as 
appropriate) to : 

G 
-1 Ws 

2,s = rl,dr,’ (2.4.1) 

In some cases, G,,, the mass-transfer rate 
across the wall, is fixed by the data of the 
problem; this occurs, for example, when suction 
of the boundary layer through the wall is 
effected by external means. In other cases, as 
when sublimation occurs from the solid into 
the gas at a rate controlled by heat transfer, 
G Z,s has to be calculated at each stage from 
the local values of some of the 4’s. Always, 
however, a differential equation is obtained 
for $s; this can be solved, by the usual numerical 
techniques, during the course of the integration. 

When the boundary is free. The last two 
choices for boundary-+ values were so straight- 
forward that they merited discussion only to 
serve as contrasts to that which now confronts 
us : the choice of the value of the stream function 
along the boundary separating the region of 
interest from an adjoining region of the flow in 
which the gradients are negligible. This boundary 
might be the outer “edge” of an axi-symmetrical 
turbulent jet, injected into a moving stream ; 
the outer “edge” of the laminar boundary 
layer on a flat plate is another example. We 
shall use the subscript G to denote such a 
boundary. 

Two cases of this kind must now be dis- 
tinguished. In the first, a definite edge to the 
boundary layer can be established without 

arbitrariness; this case arises when the flow is 
turbulent and may be assumed to obey the 
Prandtl 1925 mixing-length hypothesis [5] ; 
for then, as may be seen from [ 1 l] for example, 
the transport properties all vanish along a 
surface which is not infinitely remote from the 
region Of course, this vanishing applies only 
when the laminar contribution to the transport 
properties is already being neglected. Since this 
neglect is justified only where the turbulent 
component is large, the case may be regarded 
as rather artificial ; nevertheless, it is simple, 
useful, and sufficiently accurate for most pur- 
poses. 

In the second case of a free boundary, the 
transport properties neither vanish nor fall 
to a small fraction of their values elsewhere, 
along a definite boundary line. This is true of 
laminar flows, and of turbulent ones which 
are supposed to obey the Kolmogorov-Prandtl 
[6, 73 postulate, for example, and for which the 
free-stream turbulence level may not be neg- 
lected. In this case the G boundary is more 
arbitrary. 

Free-stream boundary with vanishing transport 
properties. When pi, eff (say) vanishes along the 
G boundary, a differential equation for tiG 
can be obtained from the general partial 
differential equation (2.1.16). Just outside the 
G boundary, a4/ao is zero ; the equation 
therefore reduces to : 

(ii?). = (@k). (2.4.2) 

Consideration of a point just inside the G 
boundary, for which Q/at1 and (@1,/G,) cannot 
be significantly different, therefore leads (whether 
w equals zero or unity at the boundary desig- 
nated by subscript G) to: 

dtic _ 1 

dr, (1cIE - *I) 
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Here we see, incidentally, an implied test justification is computational efficiency. It is, 
discriminating between the two cases. If pl,eff therefore, permissible to abandon the above 
is proportional to &#@B, the limit will be procedures at any time that it becomes con- 
finite (because r21,G,/cr+ eff is finite); then a real 
boundary can indeed exist. Otherwise the limit 

venient to do so ; for example, one may put a 
maximum limit on the entrainment rate to 

does not converge; dtiJd<i becomes infinite; avoid excessive curvature of the streamlines 
$c must be infinite; so all the fluid must be near the boundary. 
contained within the range 0 < o < 1. 

When the limit converges, which is true when 2.5. Closure to section 
Prandtl’s 1925 mixing-length hypothesis is Now that formulae have been indicated with 
used, equation (2.4.3) provides a satisfactory the aid of which the boundary-+% can be 
specification of dlC/c/drr. With its aid, the tiG calculated, the whole mathematical structure 
values along the boundaries can be calculated has been outlined. It remains to show how the 
during the course of integration, just as in the equations can be solved; this is the function 
case of tis. These calculations of the boundary of the following sections. The finite-difference 
values of $ achieve the desired effect of causing procedures are explained in Section 3, while 
the coordinate grid to expand and contract Section 4 demonstrates their utility by way of 
so as always to meet the requirement for examples. 
computational efficiency. 

Free-stream boundary with non-vanishing 3. THE RECOMMENDED FINITE-DIFFERENCE 

transport properties. Since the limit in equation PROCEDURE 

(2.4.3) does not converge unless the transport 3.1. Outline 
property vanishes, we shall apply now the full For convenience, let us express equation 
partial differential equation (2.1.16) just inside (2.1.16) as: 
the G boundary with a special consideration for 
evaluating the &#@<, term: we shall seek to 84 a$ a4 

locate the boundary so that, on the grid line 
_ + (a + ba)% = $ cao 
ati ( ) 

just inside the G boundary, the value of 4 will 
be equal to a predetermined number 4*. This ++-, 

1 

number can be chosen, for example, so that 
the difference (& - 4*) is a certain small where 

percentage of the maximum &-difference across 1 dti, 

(3.1.1) 

the layer. Now the value of a&al1 can be 
calculated along the grid line just inside the 
G boundary from the current known value of 
4 and the value of 4* desired at the downstream 
station. The finite-difference formula for this 

(3.1.2) 

will be given in Section 3.6 below. It is sufticient and 
to note here that, if the value of +* is properly 
chosen, we can be sure that the grid will always 

G1r211p1,erf 

conform to the region in which significant c = ($E - $A2 Qsif 

(3.1.3) 

(3.1.4) 

gradients of 4 are present. We shall solve equations of this type by step- 
The above procedures have been outlined by-step forward integration. Therefore, at every 

as ones which seem best at present. However, step in the integration, the values of 4 will be 
it should be remembered that the “entrainment known at discrete values of o and at one value 
rate” d$Jd<i is in any case arbitrary; its sole of 5 1 ; our task will be to obtain the values of 
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4 at the same values of o, but at a downstream 
value of rl. By repetition of this basic operation, 
the whole field of interest can be covered. 

The discrete values of o and lr, which are 
decided beforehand define a grid ; a portion of 
this is shown in Fig. 5. Points U and D represent 
respectively the upstream and downstream 
points at a given o; points at nearby values of 
o will be called U+, U-, D+, D-. The 

U+ O+ 

The control 
volume 

I x-- i 
Line oloni which 

#-values are known 
Line olbng which 
+-valuer ore to 

be determined 

FIG. 5. Location of points referred to in the difference 
equation. 

dashed lines 1 and 2 are the lines of constant 
o, midway between U U - and UU+ respec- 
tively. Lines 1 and 2 form together with the 
two lines of constant tl, a control volume 
(shown shaded) which will be useful for express- 
ing the convection terms. 

We shall describe in Section 3.2 below how 
equation (3.1.1) can be put in finite-difference 
form. Our representation of the convection 
terms, i.e. the terms on the left-hand side of 
equation (3.1.1), is based on an integrated 
average over a small control volume. This 
implies that the convection to point D is 
influenced by the values of 4 at all the neigh- 
bouring points ; it thus increases stability. 
Also, the integral equation over the whole 
layer is then automatically satisfied. While 
expressing the second-order term ~/&D(c a+/&~), 

we need to decide the value of r1 at which this 
term will be evaluated In general, we can use : 

where f is a number between zero and unity 
and subscripts U and D denote locations of 
evaluation. When f is unity, this form reduces 
to that of the explicit method, which, as men- 
tioned earlier, has severe limitations on the 

step-length (51, D - 5 1, “). For any value of f 
different from unity, the scheme becomes im- 
plicit. It can be shown, at least in simple cases, 
that instability is avoided if 0 < f < 0.5. The 
case of f = 05 corresponds to the method of 
Crank and Nicholson [3]. We have decided to 
take the value off as zero, as this combines 
stability with convenience. In other words, 
we shall evaluate the second-order term along 
the line <r = <l,D 

3.2. The difference formulae 
We shall now express the various terms in 

equation (3.1.1) by finite-difference formulae. 
The convective terms. The terms on the left- 

hand side of equation (3.1.1) can be expressed as : 

Now if we assume that 4 varies linearly between 
the grid points in both <r and o directions, it is 
easy to express the above double integral in 
terms of the values of $J at U, U+, U-, D, 
D + and D -. The resulting expression can be 
written as : 

91 4D+ + 92 $D + 93 4D- + 94, 

where the g’s are obtainable in terms of known 
quantities, including the values of 4 at & = 11, “. 
The detailed expressions for the g’s will not be 
given here; they can be easily obtained by 
straightforward algebra. 
TheJlux term As mentioned in Section 3.1, the 
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second-order term L@o(c @/aok representing 
the diffusional flux, will be evaluated along the 

line <i = rl.D However, in order that the 
resulting difference equations become linear, we 
shall evaluate the coeficient c along t1 = <i, u 
where all the quantities are known. Thus the 
finite-difference form of a/aw(c a&/&) will be : 

2 (c”+ + cv) MD+ - 4D) 

WD+ - WD- I 2 kD+ -wD) 

_ (ccl + '?-)@D - #D-j 

2 1 (WD - WD-) 

The alternative practice would be to evaluate 
the c’s along {I = rl,h; but then the solution 
of the resulting non-linear equations would 
need iteration We shall not consider this 
possibility here. 

The source term. Finally, we need to express 
the term @ Ii/G1 in finite-difference form. The 
simplest procedure would be to evaluate this 
term from the known quantities at {i,,. A 
better practice? is to express the term @ 1,/G, as : 

When 4 stands for V,, the pressure-gradient 
term lJp/a51 appears in the corresponding 
expression for @. Since the pressure p wilI not 
always be known, this case needs special 
consideration It is easy to see that the finite- 
difference form of ap/agl will be: 

PD - P7l 

5 1,D - L," 

An addition relationship can be obtained for 
the unknown pressure pn from equation (2.1.18). 

t A still better one, it might appear, would be to employ 
a more elaborate expression which allows for the dependence 
of a single @’ on several different dependent variables. 
However, to do so would be to introduce more unknowns 
than can be coped with by the solution procedure which is 
advocated below; we therefore refrain from this elaboration. 

We can write: 

WD 

PD-PD- =(#E-$'I) 

Although in principle it is possible to handle 

(3.2.1) 

this complete equation, the increased algebraic 
complication may obscure the main elements of 
the procedure. Therefore, for the purposes of 
presentation only, we shall use a simpler form 
of equation (3.2.1): we shall assume that 
pressure p is uniform for a given value of <i. 
This assumption is valid when the stream lines 
are not highly curved and the swirl velocity 
V, is small. Incidentally, this case happens to 
be the one of most practical importance. 
The following treatment is valid for this case. 
A reader interested in cases of non-uniform 
pressure in the t2 direction can work out the 
full implications of equation (3.2.1) along similar 
lines. 

The complete difference equation. So far. we 
have explained how the individual terms can 
be expressed in finite-difference form Putting 
them together, we compile the complete dif- 
ference equation as follows: 

914D+ +924D +&D- +94 

2 @“+ + c”) @D+ - 40) = 

OD+ --WD- 2 kD+ - wD) 

” (3.2.2) 

It is easy to see that, by rearrangement, this 
equation can be reduced to the form: 

&, = A&J+ + %D- + c, (3.2.3) 

where A, B and C are obtainable in terms of 
known quantities. If the pressure pD is given, 
then the equation for Vi will also have the same 
form as (3.2.3); however, in the case of confined 
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flow, the pressure pD will appear as unknown. 
The form of the equation will then be: 

V 1,D = AVI,D, + BV,,,- f c + Dp, (3.2.4) 

Equation (3.2.3) or (3.2.4) is the final outcome 
of our finite-difference formulation. There will 
be one such equation for every grid point 
except for those on the I and E boundaries. 
Only in certain circumstances will the above- 
mentioned procedure need modification. We 
shall describe this point in Section 3.4 below. 
Now we turn to the problem of solving the 
algebraic equations like (3.2.3). 

3.3. Solution of the diff”erence equations 
Procedurefor unconjhdjlows. For unconfined 

flows, the pressure pD can be obtained before 
solving the boundary-layer equations. Then 
the difference equations for all the 4’s including 
V, are of the form (3.2.3). 

Let us suppose that the grid lines divide the 
thickness of the layer into N strips. If subscript 
i denotes a node corresponding to a value of 
w, then equations of the type (3.2.3) can be 
written as : 

@i = A&i+1 + Bi$j-r + Ci, (3.3-l) 

for i = 2, 3, 4, . . . N. The values of #i and 

d, Nfl will be given as boundary conditions. 
(When the gradients of 4 at the boundaries are 
given, we shall modify the formulation of 
equation (3.2.3) so that the following solution 
procedure can still be used This point will 
be described in Section 3.4 below.) We shall 
first transform equation (3.3.1) into the following 
form : 

where 
#it = Phi,+1 + Qi, 

pi = Ai 
1 - BiPi_l’ 

Qi = 
BiQi- i + Ci 

1 - BiPi_, ’ 

and 

(3.3.2) 

(3.3.3) 

After the calculation of P’s and Q’s, it is a 
simple matter to obtain rp’s from equation 
(3.3.2) by successive substitution starting from 

(b N+l* 

Procedure for confined jlows. When the flow 
is confined, the pressure pD is not directly 
specified. On the other hand, we have an addi- 
tional relationship that the rate of change of 
the total mass flow in the whole duct with the 
streamwise co-ordinate <r depends only on the 
mass-transfer rates at the confining walls. 
Since pressure j+, appears only in an equation 
for VI, the equations for other cp’s can be solved 
by the above procedure for unconfined flows. 
We therefore describe below the procedure 
for solving the equation for V,, for confined 
flows. This is being presented hem for the sake 
of completeness; however, it should be 
mentioned that we have not yet used this 
procedure for solving any actual problem and 
that the examples in Section 4 below are all 
of the un~n~ned-flow variety. 

As shown in Section 3.2, the equation for 
V, has the form given by (3.2.4); we shall 
rewrite that equation as follows: 

V,,i = AiK,i+l + Bif/,,i-1 + Ci + Dip, (3.3.4) 

for 
i = 2,3,4, . . . N, 

where p stands for the pressure along the line 

51 = t1.D. This equation can be transformed 
into : 

V,,i = Pih,i+~ + Qi + WY (3.3.5) 
where 

pi = Ai 
1 - BiPi_l’ 

Qi = 
B,Q,-1 + Ci 

1 - BiPi_/ 

Ri = 
BiRi- 1 + Di I 

1 - B,P,_, ' 

Pz =& 

Qz = J%b, I + G 
R, = D,. 

(3.3.6) 
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We transform equation (3.3.5) once again to 
express all VI’s in terms of V,,,, I, as follows : 1 

vI,i = EiVl,N+I + Fi + Hip, KflD-kl" (3.3.7) 0 0 

where 
’ toi+ - Oi) 

Ei = PiEi+ 1, 
x 

c 

-2 

o’5(Pi+l + Pi)” (V,,i+l + vl,i)2 U 
i=l 

Fi = PiFi+ 1 + Qi, 
x{<Vl,i+l + vl,i)D - tvl,i+l + vl,ih>9 

Hi = PiHi+l + Ri; (3.3.10) 

EN = P,, 
(3.3.8) 

which has the form: 

FN = QN, 
H, = RN; 

E N+l = 1, 

F N+l = HN+l ~0. 

(3.3.11) 

where L’s and M are known quantities. Now 
substituting from equation (3.3.7), we get, 
after some re-arrangement : 

M- t Li(Ei+l +EJV l,N+l 

P= 
i=2 

- f2 LiJ’i+l + FJ 

if2 UHi + 1 + Hi) 

(3.3.12) 

At this stage we shall introduce the continuity 
equation for the whole duct. From equation 
(2.1.14) we see that: 

1 1 

rl, du 

(*E - *I)’ 
(3.3.9) 

0 0 

It is easy to see that the right-hand side is 
calculable for any value of t1 ; because the 
variation of (tiE - er) can be obtained from 
the prescribed mass-transfer rates at the con- 
fining walls, and the integral 

j rl, do 

is known from the’geometry of the duct. We 
can write? : 

t Here we neglect the density variations, so as to have 
only V1.D’s as unknowns. A different practice will have to 
be adopted when the density variations have a significant 
effect on the pressure variations. For example, ap/acl 
values can be stored in previous steps of the integration, 
and used for forward extrapolation here. It is however 
premature to suggest remedies for difficulties that have not 
yet been encountered. 

Using this value of p, we can obtain the values 
of all Vi’s from equation (3.3.7). 

3.4. Special procedures 
It has been implicitly assumed so far that 

the values & and &,.+1 at the boundaries are 
known. Sometimes, however, instead of the 
value of 4, the gradient of C#J is specified along 
the boundary. In such cases, the difference 
equations for the nodes near the boundary 
need some modification. 

The equation (3.1.1) can be written as: 

$! + (a + bw)~ = &(rJ& + @-$, (3.4.1) 
1 1 

where J, stands for the flux caused by the 
gradient of 4. Now, if the point D- lies on the 
boundary, we can write the flux term alao (rJ,) 
in finite-difference form as follows: 

2 (crJ+ + cu) MD+ - $D) 

wD+ -wD- 2 bD+ - wD) 

_ @U + Iv-) 

2 J,,D- ) 

I 
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where J,._ is known from the prescribed 
gradient of 4 at the boundary. This formula- 
tion avoids explicit reference to the unknown 
boundary value &,_. Of course, when all 
other 4’s have been calculated, &_ can be 
deduced from the prescribed gradient and from 
the value of C/J~ 

3.5. Choice offorward step 
To perform the forward integration, the size 

of the step length (tl,D - tl, c) must be decided. 
Since the present finite-difference formulation 
is of implicit type, stability will be maintained 
even when the size of the step is large; however, 
for good accuracy, small steps are necessary. 
The most economical size of the step for a 
particular class of problem can be found by 
experience. A simple procedure is to make the 
step length proportional to the thickness of 
the layer, i.e. to put: 

1 

(51,ZJ 
1 

- ll,u) = const. x - 
11 s 

1, dw. (3.5.1) 

0 

This will be quite satisfactory for most of the 
turbulent boundary layers where the thickness 
of the layer varies approximately linearly with 
the longitudinal distance. For laminar boundary 
layers, a step length proportional to the square 
of the layer thickness would be more appropriate. 

In some situations, the growth of the layer 
thickness is very slow, for example in a mixing 
layer between two streams of nearly equal 
velocities; in these cases we can choose the 
step length so that the extra quantity of fluid 
entrained during that step is equal to a definite 
fraction of the quantity of fluid already existing 
in the layer. This rule can be expressed in the 
following form : 

= const. x (lc/E - el)“. (3.5.2) 

3.6. Formula for grid control 
The quantity ($z - $r) appears in all the 

4U 

difference equations given so far. It is therefore 
necessary to describe the means of calculating 
($z - $3 for successive values of <r. It is this 
quantity that determines the actual size of 
the grid ; the following formulae will therefore 
be called the grid-control formulae. 

It is easy to see that: 

(3.6.1) 

where G- denotes the grid point next to G on 
a constant - l1 line, and the subscript GG - 
boundary happens to be a wall or a line of 
symmetry, the calculation of the corresponding 
d$/dt, is straightforward, for example by use 
of equation (2.4.1). We consider below the more 
important case of a free boundary. Again it 
is necessary to distinguish between the two 
sub-classes of this case. 

Free-stream boundary with vanishing transport 
properties. For this case, we write the equation 
(2.4.3) in finite-difference form as follows:t 

d&i --= 
d5, 

where G- denotes the grid point nest to G on 
a constant -<r line, and the subscript GG- 
indicates evaluation in between the points 
G and G-. The equation (3.6.2) is obtained by 
assuming 4 to stand for V,, and by taking the 
profile for V, as parabolic with distance in the 
interval between G- and G. It is possible to 
devise alternative forms. 

Free-stream boundary with non-vanishing 
transport properties. The basis for the grid- 
control formula for this case has been explained 
in Section 2.4. In order to present the formula 
in finite-difference form, we need to re-write 
the equation (2.1.16) after putting o equal to 
zero or unity and by expressing the term 

t u+,,~ is unity, when V, is the property in question; so 
it does not appear explicitly in the equation. 
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value +*; the expression resulting from the 
flux term will be taken as the same as in equation 
(3.6.2). Thus we have: 

dit+G _ (4r211G1~1,e&+ 

d5, (*E - $1) I OG -OG-I 

+ 

Here the C#J - w profile in the interval GG- 
is assumed to be parabolic for the purpose of 
calculating (&#@o). 

Instability in grid control. We have used an 
implicit scheme for formulating the difference 
equations and therefore can confidently expect 
stability. The equation (3.6.1) for calculating 
(tiE - ijl), however, is of the explicit type; i.e. 
the upstream value of the derivative d($E - 
$,)/d<, is used for the whole interval. This can 
give rise to fluctuations in the value of the 
thickness of the layer, when large steps in the 
t1 direction are used. One way to avoid these 
fluctuations is to use a weighted mean of the 
current value of the derivative and that for 
the previous integration. The fluctuations of 
the boundary are more likely to arise when 
the velocity in the surrounding stream is zero. 
This is to be expected because then if the 
entrainment rate happens to be rather large, 
the boundary has to be shifted by a very large 
distance to entrain the extra quantity of fluid. 
Use of a small but finite value of velocity in 
the surrounding stream will restore stability. 
Finally, if the size of the forward step is 
reasonably small, instability through grid con- 
trol will not normally arise. 

It should be noted that the grid-control 
procedure is the part of the present calculation 
method that most needs ingenuity and care. It 
would be desirable in the long run to devise a 
single general procedure which can be applied 
irrespective of whether or not the transport 
properties vanish at the boundary. 

4. APPLICATIONS 

In this section we shall demonstrate the 
capabilities of the calculation procedure 
described so far, by way of three examples. 
The purpose of this section is to show that the 
present method can be successfully used for 
predicting heat transfer and friction in various 
types of flow. Though we shall, of necessity, 
use physical hypotheses and make comparisons 
with experimental data, the emphasis is on 
presenting a convenient mathematical tool and 
not on demonstrating that the hypotheses 
which we have used am the best ones. 

A remark regarding the change of notation 
will be helpful here. Having completed the 
presentation in terms of the general coordinate 
system we can now use symbols that are simpler 
and more familiar. Thus we use below u for 
Vi, and x and y for distances in direction 1 and 
direction 2 respectively. 

4.1. Compressible laminar boundary layer on 
flat plate 

Statement of problem. To test the effectiveness 
of the new mathematical procedure, comparison 
with available exact solutions is highly desir- 
able. Therefore, as our first example, we 
have chosen the flat-plate laminar boundary 
layer for which Van Driest [12] has presented 
exact numerical solutions. The problem is 
characterized by zero pressure gradient, no 
mass transfer, uniform wall temperature, uni- 
form specific heat, uniform Prandtl number 
(equal to 0.75) and viscosity variation given 
by the Sutherland law, namely: 

P T+ 0 1.505 __= - 
PG TG 1 + 0.505(T,/T)’ 

(4.1.1) 

where p and T respectively stand for viscosity 
and absolute temperature, while the subscript 
G denotes conditions in the main stream. The 
ratio of specific heats, 7, is taken as 1.4 and the 
density is assumed to be inversely proportional 
to the absolute temperature. The task is to 
calculate the drag coefficient and the Stanton 
number for various Mach numbers and for 
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various wall-to-mainstream temperature ratios. 
Details of solution procedure. In this case the 

partial differential equations solved were (2.1.4) 
and (2.1.7). The number of grid lines across the 
layer was 16. The initial profiles of velocity 
and temperature were arbitrarily taken as 
linear with distance. The grid-control pro- 
cedure used was, of course, that for the boundary 
with non-vanishing viscosity. The value of 

4* was taken as 0.999 uc, where u, is the 
free-stream velocity. The integration was con- 
tinued until the profiles of velocity and tempera- 
ture ceased to change. In this state the boundary- 
layer thickness becomes proportional to the 
square root of the longitudinal distance along 
the plate. This equilibrium state was achieved 

after about 150 integration steps and 0.2 min of 
IBM 7090 computer time. 

Results. Figures 6 and 7 respectively show the 
variations of E,.(,/Re) and St(,/Re) with Mach 
number, for various temperature ratios. The 
full lines represent the solutions from [12] and 
the points show our solution. The agreement 
is satisfactory. Thus the present method enables 
one to obtain accurate solutions of the equations 
for “similar” boundary layers, even though it 
is not specifically designed for this purpose. 

4.2. Axisymmetrical turbulent jet 
Statement of problem. As our second example, 

we take the problem of an axi-symmetrical 
turbulent jet. Figure 8 shows a jet with velocity 

L c OS- 

I(; 0.6- 

O4- 

0.2 - 

- Exact solution [I21 
Present solution 

r,/ rG 

0 0.25 
A I.0 
0 4.0 
Q 6.0 
l Adiabatic wall 

1 I I I I 
0 2 4 6 6 IO 

Mach No. 

FIG. 6. Variation of mean skin-friction coefficient. 

FIG. 7. Variation of Stanton number. 



1408 S. V. PATANKAR and D. B. SPALDING 

ul,-, coming out from a nozzle of diameter d 
into a surrounding stream of uniform velocity 
Us The density is uniform. The problem is to 
calculate the centre-line velocity at various 
downstream distances, the velocity profiles, etc. 

Details of solution procedure. For this case the 
partial differential equation (2.1.4) was solved. 
The effective viscosity was calculated by using 
Prandtl’s 1925 mixing-length hypothesis, which 
has been described in Section 2.2. The mixing 
length was taken as uniform across the layer 
and equal to 0.0845 times a characteristic 
thickness of the layer, defined as the distance 
between two points each of which is near one 
of the boundaries of the layer; when the boundary 
coincides with a wall or with a line of symmetry. 
such a point lies on the boundary; when the 
boundary is adjacent to a free stream, the 
point is located such that the velocity there 
differs from the free-stream velocity by 1 per 
cent of the maxims velocity difference across 
the layer. 

To start the integration, a linear velocity 
profile with a very small thickness of the layer 
was used. The radius of the inner boundary 
was calculated from the rate of entrainment 
from the potential core into the inner surface. 
After the inner radius became zero, the inner 
boundary was considered to be the line of 
symmetry. The number of grid lines across the 
layer was eleven. The forward step was chosen 
so that the extra amount of Ruid entrained 
during each step was equal to one-tenth of the 
quantity of the fluid already within the layer. 

Results. Figure 9 shows the decay of the 
centre-line velocity of the jet with downstream 
distance, for three velocity ratios: U&Q, 0 = 0, 
O-2, 0.5. Also shown is the line representing the 
relation : 

u1 - uE 6.5 =-- 
%,o - % x/d’ 

(4.2.1) 

which is known to agree well with most of the 
experimental data for the downstream region 
of free jets in stagnant surroundings. The 

agreement with equation (4.2.1) of the present 
solution for t.+/tlr, o = 0 is quite good. 

Each curve on Fig. 9 represents about O-25 
min of IBM 7090 computer time. 

For the downstream region of a jet in stagnant 
surroundings, Tollmien [13] has obtained an 

FIG. 8. The axi-symmetrical jet. 

0.2 - 

@04- 

O-02 - 

FIG. 9. Decay of centre-line velocity of the jet. 

so that the extra amount of fluid entrained 
exact solution for the Prandtl 1925 mixing- 
length hypothesis. As a mathematical test of 
our procedure, we should expect good agreement 
between the present solution and Tollmien’s 
solution. In Fig. 10 is presented the comparison 
of the dimensionless velocity profiles. We can 
conclude that use of only eleven grid lines has 
predicted very satisfactory velocity profiles. 

4.3. Radial wall jet 
Statement of the problem. As a final illustration, 

we present the results of a calculation of a 
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radial wall jet. Though it is within the scope of 
boundary-layer theory, this case has several 
unusual features: the flow direction is at right 
angles to the axis of symmetry (i.e. /I = 900) ; 
the flow contains characteristics of both the 
conventional boundary layer and the free jet; 

I.0 
‘\ n ‘\ - Exact salution [I31 

‘\\ 
----- Present method 

I I I 

0 m5 I.0 I.5 2.0 2.5 3.0 

r/r I 
? 

FIG. 10. Dimensionless velocity profile in the jet: comparison 
of the present and exact solutions. 

the velocity profiles exhibit a maximum and 
consequently the shear stress changes sign. In 
practice, such a flow occurs when a jet impinges 
normally on a plate. The problem here is to 
predict the development of the velocity profile 
for such a wall jet on smooth wall, starting from 
a known velocity profile at a given distance from 
the axis of symmetry. 

Details of solution procedure. Once again the 
partial differential equation solved was (2.1.4). 
The effective viscosity was calculated by using 
Prandtl’s 1925 mixing-length hypothesis. The 
variation of mixing length I,,, was taken as: 

. 

O<y&: 1, = Icy; 
u 1 (4.3.1) 

&Y, p< y: 1, = L-y,; 
K 

where y, is the characteristic thickness defined 
in Section 4.2 and u and AG are constants. We 
have used : K = 0.5, and AG = 0.12. These 

values will appear to be somewhat higher than 
those appropriate to conventional boundary 
layers or plane wall jets. However, experimental 
data for entrainment and shear stresses in 
radial wall jets do show that the corresponding 
mixing length must be larger. 

For the first interval near the wall, we have 
assumed that the velocity profile corresponds 
to the “universal” law of the wall, given by : 

u+ = kln(9y+), (4.3.2) 

The shear stress at the wall can be calculated 
from this law, which incidentally is an example 
of the Couette-flow relationships mentioned 
in Section 2.3. 

The number of grid lines used across the 
layer was sixteen and forward steps of one- 
fourth of the layer thickness were taken. 

The calculations were performed for a par- 
ticular set of experimental data taken from [ 141. 

Results and comparison with experiment. 
Figure 11 shows our predictions and the experi- 
mental data for the decay of maximum velocity 

IbOI- 1’0 

.,o Data of Jayuflllaka [I41 

0.1 y ’ 1 Illll IO 20 40 60 60 Id 

X/Y, 

FIG. 11. Decay of maximum velocity and growth of half- 
value thickness of a wall jet. 

and for the growth of the half-value thickness 
y+. This half-value thickness is defined as the 
distance from the wall of a point which is 
beyond the maximum and at which the velocity 
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is equal to one-half of the maximum velocity. 
The symbols yc and uc stand respectively for the 
thickness of the slot and the velocity at it in 
the experimental situation under consideration. 
The distance x is measured from the slot. The 
agreement with experiment is satisfactory in 
this case. Indeed the constants K and & have 
been chosen so as to obtain good agreement. 

The integration takes about 0.2 min of 
IBM 70!90 computer time. 

5. CONCLUSIONS 

The foregoing method of solving sets of 
simultaneous non-linear parabolic differen- 
tial equations has proved itself to be con- 
venient, accurate and quick in three rather 
different circumstances. 
The main merits of the method derive from 
its use of the non-dimensional stream function 
as cross-stream variable and of a grid-control 
procedure (“entrainment law”) which locally 
satisfies the differential equation of motion. 
Other features of the method, for example 
the linearisation of the finite-difference form- 
ulae, are inessential, and perhaps not particu- 
larly worthy of emulation. 
Considerable simplification has been effected, 
for turbulent flows, by the neglect of longi- 
tudinal convection in the interval close to 
the wall; this permits the momentum and 
heat flux through the laminar sub-layer to be 
expressed by algebraic relations based upon 
once-for-all integrations or empirical laws. 
Further development of the method should 
be directed towards the formulation of a 
general, optimum entrainment law, and the 
testing of the procedure for confined flows. 
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ResllmCUn processus pas a pa% numtrique, implicite et general est present& pour la solution d’tquations 
paraboliques aux d&iv& partielles, et plus particulierement de celles de la couche limite. La principale 
nouveaute reside dans le choix d’une grille qui ajuste son ecartement de facon a s’adapter a I’epaisseur 
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de la couche limite dans laquelle. existent des gradients importants La fonction de courant sans dimensions 
est employee comme variable indtpendante dans la couche limite. 

Les possibilitb de la methode sont montr&s en l’appliquant a: la plaque plane chaul%e dam un 
Ccoulement laminaire a nombte de Mach elevt; le jet turbulent a symetrie de revolution dans une 

atmosphere en mouvement ou au repos; et le jet parittal turbulent radial. 

Zuaanmumfassung-Es wird ein allgemeines, implizites, numerisches fortschreitendes Rechenverfahren 
angegeben, das zur Liisung partieller Differentialgleichungen vom parabolischen Typ, insbesondere der 
Grenzschichtdifferentialgleichungen, geeignet ist Das wesentlich Neue an diesem Verfahren liegt in der 
Wahl eines Dilferenzengitters, das seine Schnittweite der Dicke der Schicht anpasst in welcher bedeutende 
Gradienten der ZustandsgrBssen auftreten. 

Die dimensionslose Stromfunktion dient als unabhangige Variable iiber die Grenzschicht. 
Die Leistungsffiigkeit der Methode wird durch Anwendung auf folgende Probleme gezeigt: beheizte 

ebene Platte mit einer Laminarstriimung hoher Mach-Zahl; axial symmetrischer turbulenter Freistrahl 
in bewegter und ruhender Umgebung; und radial turbulenter Wandstrahl. 

AsrsroTav-IIpaeo~nlTcrr uncnennbrB areron pemeHuH ~w++eperrnaanbrrbtx ypamremrtt 
napa6onnrecuoro TIina B ~aCTHbIX npOK3BOflHb1x npHYeHBTeJIbH0 K aagauam nOrpaHWIHOI'0 

Ci'lOR. HoBKaHa, B OCHOBHOM, OTHOCllTCH K BbI6Opy CeTKEI, mHpHHa KOTOpOti COOTBeTCTByeT 

TOJlmHHe CJlOR,B KOTOpOM HMeIOTCII 3HaWfTeJlbHble rpaJ&IzeHTbl OCHOBHbIX napaMeTpOB. 

Eeapaauepuan @YHK~HR ToKa m2nonbayeTcR B KaYecTBe KeaaBKcKMoti nepeMeHHoti 

nonepeK CJIOJZ. BO3MOHWOCTH MeToAa WIJllOCTptipyIOTCH CJIe.ItyIOlI(kiMIi npwepamw:HarpeTaK 

nnocKasz nnacTHHa B naMuHapHoM noToKe npK 6onbmKx wicnax Maxa; 0cecKMMeTpwiHaR 

Typ6yJIeHTHaR CTpyR B ~BU?KymeffCK ii HenOABfiqHOt CpeAaX; pa@iaJlbHaR Typ6yJleHTHat-I 

npsicTenHaH cTpysi. 


